
[HTMLDocument|HTMLElement|Node|NodeList].getElementsByClassNames

For future implementations this DOM getter is thougth to be a native method of any
[HTMLElement] or any [Node] object as well as of any [NodeList] object.

In addition this method should also be *kind of a public static* property of the two
*namespace*s [[Node]] and [[NodeList]] since this is the only possible way to provide

such funtionality in a comprehensive way to todays browsers afterwards at all.

 [classNames] - The Methods Core Attribute - Thoughts:

[classNames] should remain a single all purpose attribute, where users will provide their

search(pattern(s)) to ...

... Examples:

- "happy, excited, erubescent" will match any occurence of any of the given

comma separeted single _class_names_. Thus such an attribute value gets

treated like an arguments list/array.

And furthermore this is the reason to label this method as

"getElementsByClassNames".

- "happy excited erubescent" will exactly match any elements [className]

attribute that features any loose combination of the given (multiple)

_class_name_.

- "happy excited erubescent, excited coy erubescent, excited" is a

combination of the above discussed features. Here the methods returning result
list would contain elements that’s [className] attribute features any loose

combination of either the given (multiple) _class_name_ "happy excited

erubescent" or the (multiple) _class_name_ "excited coy erubescent" -

moreover every match on "excited" will be added to this list.

- The second nature of [classNames] is not made up of the just discussed string

type. This argument should definitely be allowed to be a [RegExp] object as well.

Note: Certainly the result list refences every possible match only once.

 Multiple Class Names Within An Elements [className] Attribute

 How It Is Supposed To Work:

Sticking to [http://www.w3.org/TR/CSS21/selector.html#class-html] css class rules

that are provided in the folowing different ways

...
 p.happy {background-color: #00bfff;} /* [deepSkyBlue] */

 p.excited {background-color: #ffa500;} /* [orange] */

 p.happy.excited {background-color: #ffc0cb;} /* [pink] */

 p.happy.excited.joking {background-color: #ff0;} /* [yellow] */

 p.happy.excited.joking.childish {background-color: #ff0;} /* [yellow] */

 p.excited.erubescent {background-color: #ff7f50;} /* [coral] */

 p.excited.coy.erubescent {background-color: #f00;} /* [red] */ /*

 p.happy.excited.joking {background-color: #ff0;}*/ /* [yellow] */

... are supposed to be acknowledged if applied by an elements [class] attribute as

shown in the following example ...

 <p class="happy">happy : [deepSkyBlue]</p>

 <p class="excited">excited : [orange]</p>

 <p class="excited happy">excited happy : [pink]</p>

 <p class="happy excited">happy excited : [pink]</p>

 <p class="happy erubescent excited">(happy) erubescent excited - [coral]</p>

 <p class="erubescent happy excited">erubescent (happy) excited - [coral]</p>

 <p class="excited erubescent coy happy">excited erubescent coy (happy) : [red]</p>

 <p class="excited coy happy erubescent">excited coy (happy) erubescent : [red]</p>

 <p class="coy happy erubescent excited">coy (happy) erubescent excited : [red]</p>

 <p class="coy happy erubescent">coy happy erubescent : [deepSkyBlue]</p>

 <p class="excited coy erubescent happy excited">excited coy erubescent happy excited :

[red]</p>

 <p class="happy excited coy excited erubescent">happy excited coy excited erubescent :

[red]</p>

 <p class="erubescent coy excited happy joking">erubescent coy excited happy joking :

[red]</p>

 <p class="happy joking excited erubescent coy">happy joking excited erubescent coy :

[red]</p>

 <p class="erubescent coy happy excited joking">erubescent coy happy excited joking :

[red]</p>

 <p class="happy excited joking erubescent coy">happy excited joking erubescent coy :

[red]</p>

 <p class="happy excited joking childish erubescent coy">happy excited joking childish

erubescent coy : [yellow]</p>

 <p class="happy joking excited erubescent coy childish">happy joking excited erubescent coy

childish : [yellow]</p>

... that’s practical use clearly points out that order is not an exclude/preclude criterion

whether a rule gets applied or not but surely/definitely matters a rules specificity for it

will take effect or not.

Thus the discussed getter has to work likewise.

 Multiple Class Names Within An Elements [className] Attribute

 How A Major Part Of The Prospective Users Might Expect It To

 Work As Well:

They may want to provide multiple classes as one of the many possible variants to which
this methods [classNames] attribute can adopt/mutate. And they might think of the

given order as kind of an identifier to a certain such classified element or rather element

group/cluster.

Therefore it should be considered to let this method work by default within the

specifictions conform *loose combination* mode. The methods last boolean type
argument - maybe [complyStrictOrder] - hereby gets omitted and therefore gets

converted to [false].

But if this argument was set explicitly [true] [getElementsByClassNames] runs within a

strict class names order mode.
In case the [classNames] attribute is a regular expression any value of

[complyStrictOrder] will be ignored - the method just has to run this given filter.

A fully implemented API of the above discussed matter than might

look like the following pseudo code tries to illustrate:

/*

 static methods of the [[Node]] / [[NodeList]] *namespace*:

*/

NodeList.getElementsByClassNames(nodeListObj, classNames[, complyStrictOrder]);

Node.getElementsByClassNames(nodeObj, classNames[, complyStrictOrder]);

/*

 before a serious implementation takes place

 the type or instance of the returned list

 needs to be discussed: [[Array]] vs [[NodeList]]

 valid arguments values/types/instances:

 - nodeListObj:[HTMLCollection|NodeList|Array]

 - nodeObj:[HTMLElement|Node]

 - classNames:[undefined|null|"*"|""|string|String|RegExp]

 [undefined], [null], [""] are all synonyms for ["*"] and will

 result to a list that references all elements that’s [className]

 attribute has been set in any way (HTML coded or assigned by

 JavaScript).

 - complyStrictOrder:[undefined|boolean|Boolean]

*/

/*

 [document] getter that most of the prospective users do expect:

*/

document.getElementsByClassNames(classNames[, complyStrictOrder]);

//[object HTMLDocument].getElementsByClassNames(classNames[, complyStrictOrder]);

/*

 (prototype) methods of every [HTMLElement] and/or [Node] object

 as well as of every [NodeList] object:

*/

[object HTMLElement].getElementsByClassNames(classNames[, complyStrictOrder]);

[object NodeList].getElementsByClassNames(classNames[, complyStrictOrder]);

